7 research outputs found

    RSU-Based Online Intrusion Detection and Mitigation for VANET

    Full text link
    Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting the integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel statistical intrusion detection and mitigation techniques based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods are evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior performance of the proposed methods in terms of quick and accurate detection and localization of cyberattacks

    Statistical Anomaly Detection and Mitigation of Cyber Attacks for Intelligent Transportation Systems

    Get PDF
    Secure vehicular communication is a critical factor for secure traffic management. Perfect security in intelligent transportation systems (ITS) has solid and efficient intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-ofservice attacks (DDoS), especially the stealth low-rate DDoS attacks, targeting the integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel statistical intrusion detection and mitigation techniques are proposed for the considered attacks. The performance of the proposed methods are evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior performance of the proposed methods in terms of quick and accurate detection and localization of cyber-attacks

    RSU-Based Online Intrusion Detection and Mitigation for VANET

    No full text
    Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion detection and mitigation based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods is evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior detection and localization performance of the proposed methods by 78% in the best case and 27% in the worst case, while achieving the same level of false alarm probability

    Improving Security and User Privacy in Learning-Based Traffic Signal Controllers (TSC)

    No full text
    Final ReportThe 21st century of transportation systems leverages intelligent learning agents and data-centric approaches to analyze information gathered with sensing (both vehicles and roadsides) or shared by users to improve transportation efficiency and safety. Numerous machine learning (ML) models have been incorporated to make control decisions (e.g., traffic light control schedules) based on mining mobility data sets and real-time input from vehicles via vehicle-to-vehicle and vehicle-to-infrastructure communications. However, in such situations, where ML models are used for automation by leveraging external inputs, the associated security and privacy issues start to surface. This project aims to study the security of ML systems and data privacy associated with learning-based traffic signal controllers (TSCs). Preliminary work has demonstrated that deep reinforcement learning (DRL) based TSCs are vulnerable to both white-box and black-box cyber-attacks. Research goals include 1) quantifying the impact of such security vulnerabilities on the safety and efficiency of the TSC operation, and 2) developing effective detection and mitigation mechanisms for such attacks. In learning based TSCs, vehicles share their messages with the DRL agents at TSCs, which will then analyze the data and take action. Sharing vehicular mobility data with a network of TSCs may cause privacy leakage. To address this problem, differential privacy techniques will be applied to the mobility datasets to protect user privacy while preserving the effectiveness of the prediction outcomes of traffic-actuated or learning-based TSC algorithms. Approaches will be evaluated in vehicular simulators using real mobility data from San Francisco and other cities in California. By accomplishing these goals, learning-based transportation systems will be more secure and reliable for real-time implementations.U.S. Department of Transportation 69A355174711
    corecore